Assessing linkages between stream water and bed sediment *E. coli* levels, and storm flow in agricultural watershed

Pramod K. Pandey

Post Doctoral Scholar

Michelle L. Soupir

Assistant Professor

Agricultural and Biosystems Engineering Department

Iowa State University, Ames, 50011

Introduction and review

- Elevated levels of pathogens or fecal indicator organisms (FIO)
 in streams are a major cause of water quality impairments.
- Pathogens impair more than 480,000 km of streams and 2 million ha of lakes in the United States (EPA, 2012).
- EPA's recommended geometric mean values of *E. coli* in fresh water are 126 CFU/100 ml.
- There is no criteria for *E. coli* levels during storrm flow.
- Information of E. coli levels in bed sediment is limited.
- Measured data of E. coli are are sporadic and limited.

Introduction and review

- Jamieson et al. (2005), Muirhead et al. (2004), and Krometis et al. (2007) studied E. coli levels during storm events.
- Muirhead et al. (2004) used artificial flooding
- Jamieson et al. (2005) used E. coli resistant to nalidixic acid.
- Krometis et al. (2007) studied water column E. coli variations

Goal and objectives

Goal

Improving understanding of *E. coli* levels in water column and bed sediment during storm events.

Objectives

- Quantifying E. coli levels in water column and bed sediment, and total suspended sediment (TSS) during storm flow
- Assessing relationships between E. coli levels in bed sediment and water column, TSS, and storm flow

Study Area

Total area: 592 sq km

Basin perimeter: 134 km

First order streams: 75

Main channel length: 60 km

Crop land area: 74%

CAFO units: 20

Measurements and data

- 1) E. coli levels in water column, 2) E. coli in sediment, 3) TSS,
- 4) grain size, 5) stream flow, and 6) precipitation

Results – flow and precipitation

Results – E. coli levels in water and sediment

Results – *E. coli* ratio between water and sediment

Water column E. coli concentrations (CFU/m3)

Results – Streambed sediment

Results – Grain size

Results – Summary of water quality

Parameters	Mean	Median	S. dev.	Min.	Max.
Water E. coli (CFU/100 ml)	7598	4133	9593	360	37553
Bed sediment E. coli (CFU/100 g)	3355	3049	1955	897	6577
Stream flow (m ³ /s)	7.4	7.5	3.4	0.68	12.6
Total suspended solids (TSS) (mg/L)	418	390	257 (70	770

Results – relationships between *E. coli* levels and TSS

Results – relationships between *E. coli* levels and TSS

Results – relationships between *E. coli* levels, TSS, and strom flow

Conclusions

- *E. coli* levels in stream water column was considerable greater during storm flow (37,553 CFU/100 ml) compared to background *E. coli* levels (360 CFU/100 ml).
- The change in E. coli levels followed the flow pattern.
- Exponential regression yielded better R² compared to linear regression.
- Exponential regression between E. coli levels and TSS yielded R² of 0.45.
- Exponential regression between E. coli levels in water column and stream flow yielded R² of 0.54.
- Exponential regression between TSS and stream flow yielded R² of 0.66.

Limitations and future study

- The data is from a single storm event and from single watershed.
- Similar studies in multiple watersheds under various storm events can potentially yield improved relationships.

References

- Jamieson, R.C., Joy, D.M., Lee, H., Kostaschuk, R., Gordon, R.J., 2005.
 Resuspension of sediment-associated *Escherichia coli* in a natural stream.
 Journal of Environmental Quality 34 (2), 581-589.
- Krometis, L.H., G.W., Characklis, O.D., Simmons, M.J., Dilts, C.A., Likirdopulos, Sobsey, M.D., 2007. Intra-storm variability in microbial partitioning and microbial loading rates. Water Research. 41, 506–516.
- Muirhead, R.W., Davies-Colley, R.J., Donnison, A.M., Nagels, J.W., 2004.
 Faecal bacteria yields in artificial flood events: quantifying in-stream stores.
 Water Research 38, 1215–1224.
- Pandey, P.K., M.L. Soupir, and C.R. Rehmann, <u>2012</u>. A model for predicting resuspension of *E. coli* from streambed sediments. Water Res. 46:115-126.

THANK YOU

E. mail: pkpandey@iastate.edu